A177442 Smallest a(n) such that the prime factorization of a(n)! contains at least one factor to each exponent between 1 and n.
2, 6, 15, 22, 55, 68, 85, 145, 261, 296, 333, 370, 492, 533, 590, 885, 944, 1005, 1143, 1207, 1278, 2831, 2980, 3048, 3175, 3302, 3429, 3576, 3725, 3874, 4023, 4775, 4966, 7368, 7582, 7805, 8289, 8606, 9036, 9036, 9287, 9599, 9599, 9824, 13902, 14233
Offset: 1
Keywords
Examples
15! = 2^11 * 3^6 * 5^3 * 7^2 * 11 * 13 and is the smallest number whose prime factorization has at least one factor with exponent 1, one factor with exponent 2, and one factor with exponent 3, so a(3)=15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..276
Crossrefs
Cf. A000142.
Programs
-
Mathematica
f[n_] := Module[{e = Union[FactorInteger[n!][[;; , 2]]]}, FirstPosition[Differences[e], ?(# > 1 &)][[1]]]; f[2] = f[3] = 1; seq[len] := Module[{s = Table[0, {len}], n = 1, c = 0, i}, While[c < len, n++; i = f[n]; Do[If[s[[j]] == 0, c++; s[[j]] = n], {j, 1, Min[i, len]}]]; s]; seq[40] (* Amiram Eldar, Apr 20 2023 *)
Extensions
Corrected and extended by D. S. McNeil, May 22 2010