A177459 The maximal positive integer m for which the exponents of 2 and prime(n) in the prime power factorization of m! are both powers of 2.
19, 131, 34, 19, 35, 35, 35, 67, 259, 575, 67, 67, 67, 131, 259, 515, 1027, 131, 131, 131, 131, 131, 259, 259, 259, 514, 515, 515, 515, 8195
Offset: 2
Examples
For n=31, prime(n)=127 is Mersenne primes. Thus a(31)=(1/2)*128^2+3=8195.
Links
- Vladimir Shevelev, Compact integers and factorials, Acta Arithmetica 126 (2007), no. 3, 195-236.
Crossrefs
Formula
a(2)=19, a(3)=131; if prime(n) has the form (2^(4k+1)+3)/5 for k>=1,then a(n)=5*prime(n)-1; if prime(n)>=17 is Fermat prime, then a(n)=2*prime(n)+1; if prime(n) has the form 2^k+3 for k>=3, then a(n)=2*prime(n)-3; otherwise, if prime(n) is in interval [2^(k-1)+5, 2^k) for k>=4, then a(n)=3+2^(k+floor(log_2((p_n-5)/(2^k-prime(n)))). In any case, a(n)<=(1/2)*(prime(n)+1)^2+3. Equality holds for Mersenne primes>=31.
Comments