A177461 The smallest k such that Fibonacci(n)+k and Fibonacci(n)-k are both prime.
0, 0, 0, 3, 0, 2, 3, 12, 0, 5, 0, 24, 3, 4, 0, 33, 48, 28, 57, 192, 0, 31, 12, 60, 81, 28, 0, 177, 108, 50, 345, 150, 168, 35, 6, 618, 735, 76, 18, 147, 0, 134, 111, 126, 0, 85, 642, 1146, 225, 92, 480, 219, 348, 466, 345, 72, 300, 89, 90, 312, 2025, 664, 168, 945, 276, 128
Offset: 3
Keywords
Examples
3 +- 0 -> primes, 5 +- 0 -> primes, 8 +- 3 -> primes, 13 +- 0 -> primes, 21 +- 2 -> primes, ...
Links
- Robert Israel, Table of n, a(n) for n = 3..1251
Programs
-
Maple
A047160 := proc(n) for k from 0 to n-1 do if isprime(n-k) and isprime(n+k) then return k; end if; end do: return -1 ; end proc: A177461 := proc(n) A047160(combinat[fibonacci](n)) ; end proc: # R. J. Mathar, Jan 23 2011
-
Mathematica
f[n_] := Block[{k}, If[n==2||OddQ[n], k=0, k=1]; While[!PrimeQ[n-k] || !PrimeQ[n+k], k+=2]; k]; Table[f[Fibonacci[n]], {n,3,100}]
Comments