A177471 Avoiding the pattern 121'2'. To avoid 121'2' means not to have four consecutive letters such that the first letter is less than the second one and the third letter is less than the fourth one.
1, 1, 2, 6, 18, 61, 281, 1541, 8920, 57924, 437490, 3611389, 31721537, 304085783, 3180772870, 35422074330, 418050879810, 5266547286061, 70459362412265, 991921937012273, 14681437097585260, 228615478225446360, 3730868960721027906, 63577641238069645741
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..472
- S. Kitaev, Introduction to partially ordered patterns, Discrete Applied Mathematics 155 (2007), 929-944.
Programs
-
Maple
b:= proc(u, o, s, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, t, false), j=1..u)+ `if`(s, 0, add(b(u+j-1, o-j, t, true), j=1..o))) end: a:= n-> b(n, 0, false$2): seq(a(n), n=0..25); # Alois P. Heinz, Oct 25 2013
-
Mathematica
b[u_, o_, s_, t_] := b[u, o, s, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, t, False], {j, 1, u}] + If[s, 0, Sum[b[u+j-1, o-j, t, True], {j, 1, o}]]]; a[n_] := b[n, 0, False, False]; a /@ Range[0, 25] (* Jean-François Alcover, Nov 03 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.7411900298994603810165..., c = 2.41202786457703060749584... . - Vaclav Kotesovec, Aug 22 2014
Extensions
a(10)-a(23) from Alois P. Heinz, Oct 25 2013