A177477 Number of permutations of 1..n avoiding adjacent step pattern up, down, up.
1, 1, 2, 6, 19, 70, 331, 1863, 11637, 81110, 635550, 5495339, 51590494, 524043395, 5743546943, 67478821537, 844983073638, 11240221721390, 158365579448315, 2355375055596386, 36870671943986643, 606008531691619131, 10435226671431973345, 187860338952519968538
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..468
- Sergey Kitaev, Introduction to partially ordered patterns, Discrete Applied Mathematics 155 (2007), 929-944.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, [1, 3, 1][t]), j=1..u)+ `if`(t=3, 0, add(b(u+j-1, o-j, 2), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Mar 10 2020
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, {1, 3, 1}[[t]]], {j, 1, u}] + If[t == 3, 0, Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 08 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = A245758 = 0.7827041801715217018447074977..., c = 2.035127405829990832658061124449458067... . - Vaclav Kotesovec, Aug 22 2014
Extensions
a(18)-a(23) from Alois P. Heinz, Oct 06 2013
a(0)=1 prepended by Alois P. Heinz, Mar 10 2020
Comments