cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177479 Number of permutations of 1..n avoiding adjacent step pattern up, down, down.

Original entry on oeis.org

1, 1, 2, 6, 21, 90, 450, 2619, 17334, 129114, 1067661, 9713682, 96393726, 1036348587, 11998603710, 148842430470, 1969461102357, 27688474234602, 412166988789642, 6476330295597051, 107117619952992966, 1860296912926495938, 33845967939906741213, 643778989807702357314
Offset: 0

Views

Author

Submitted independently by Signy Olafsdottir (signy06(AT)ru.is), May 09 2010 (9 terms) and R. H. Hardin, May 10 2010 (17 terms)

Keywords

Comments

Suppose j

Crossrefs

Column k=0 of A242819.
Columns k=4,6 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
           add(b(u+j-1, o-j, 1), j=1..o)+ `if`(t<2,
           add(b(u-j, o+j-1, `if`(t=0, 0, 2)), j=1..u), 0))
        end:
    a:= n-> b(n, 0, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 07 2013
  • Mathematica
    FullSimplify[Rest[CoefficientList[Series[(E^(3*x/2) + 2*Cos[Sqrt[3]*x/2]) / (3*Cos[Sqrt[3]*x/2] - Sqrt[3]*Sin[Sqrt[3]*x/2]), {x, 0, 20}], x] * Range[0, 20]!]] (* Vaclav Kotesovec, Aug 23 2014 *)

Formula

E.g.f.: (exp(3*x/2) + 2*cos(sqrt(3)*x/2)) / (3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)). - Vaclav Kotesovec, Aug 23 2014
a(n) ~ n! * (1+exp(Pi/sqrt(3))) * 3^(3*n/2+1/2) / (2*Pi)^(n+1). - Vaclav Kotesovec, Aug 23 2014

Extensions

a(18)-a(23) from Alois P. Heinz, Oct 06 2013