A177510 Number of compositions (p0, p1, p2, ...) of n with pi - p0 <= i and pi >= p0.
1, 1, 2, 3, 5, 8, 14, 25, 46, 87, 167, 324, 634, 1248, 2466, 4887, 9706, 19308, 38455, 76659, 152925, 305232, 609488, 1217429, 2432399, 4860881, 9715511, 19421029, 38826059, 77626471, 155211785, 310357462, 620608652, 1241046343, 2481817484, 4963191718, 9925669171, 19850186856, 39698516655, 79394037319
Offset: 0
Keywords
Examples
From _Joerg Arndt_, Mar 24 2014: (Start) The a(7) = 25 such compositions are: 01: [ 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 2 ] 03: [ 1 1 1 1 2 1 ] 04: [ 1 1 1 1 3 ] 05: [ 1 1 1 2 1 1 ] 06: [ 1 1 1 2 2 ] 07: [ 1 1 1 3 1 ] 08: [ 1 1 1 4 ] 09: [ 1 1 2 1 1 1 ] 10: [ 1 1 2 1 2 ] 11: [ 1 1 2 2 1 ] 12: [ 1 1 2 3 ] 13: [ 1 1 3 1 1 ] 14: [ 1 1 3 2 ] 15: [ 1 2 1 1 1 1 ] 16: [ 1 2 1 1 2 ] 17: [ 1 2 1 2 1 ] 18: [ 1 2 1 3 ] 19: [ 1 2 2 1 1 ] 20: [ 1 2 2 2 ] 21: [ 1 2 3 1 ] 22: [ 2 2 3 ] 23: [ 2 3 2 ] 24: [ 3 4 ] 25: [ 7 ] (End)
Crossrefs
Cf. A238859 (compositions with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
This is column k = 1 of A352525.
A352517 counts weak excedances of standard compositions.
Programs
-
Maple
A179748 := proc(n,k) option remember; if k= 1 then 1; elif k> n then 0 ; else add( procname(n-i,k-1),i=1..k-1) ; end if; end proc: A177510 := proc(n) add(A179748(n,k),k=1..n) ;end proc: seq(A177510(n),n=1..20) ; # R. J. Mathar, Dec 14 2010
-
Mathematica
Clear[t, nn]; nn = 39; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0]; Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Jan 01 2015 *) pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pdw[#]==1&]],{n,0,10}] (* Gus Wiseman, Mar 31 2022 *)
-
PARI
N=66; q='q+O('q^N); Vec( 1 + q/(1-q) * sum(n=0, N, q^n * prod(k=1, n, (1-q^k)/(1-q) ) ) ) \\ Joerg Arndt, Mar 24 2014
-
Sage
@CachedFunction def T(n, k): # A179748 if n == 0: return int(k==0); if k == 1: return int(n>=1); return sum( T(n-i, k-1) for i in [1..k-1] ); # to display triangle A179748 including column zero = [1,0,0,0,...]: #for n in [0..10]: print([ T(n,k) for k in [0..n] ]) def a(n): return sum( T(n,k) for k in [0..n] ) print([a(n) for n in [0..66]]) # Joerg Arndt, Mar 24 2014
Formula
G.f.: 1 + q/(1-q) * sum(n>=0, q^n * prod(k=1..n, (1-q^k)/(1-q) ) ). [Joerg Arndt, Mar 24 2014]
Extensions
New name and a(0) = 1 prepended, Joerg Arndt, Mar 24 2014
Comments