A177522 Number of permutations of 1..n avoiding adjacent step pattern up, up, down, down.
1, 1, 2, 6, 24, 114, 648, 4284, 32256, 273616, 2578352, 26725776, 302273664, 3703441104, 48865510848, 690823736064, 10417318281216, 166907223390976, 2831507368842752, 50703852290781696, 955742450175919104, 18916030525704006144, 392213482250102734848
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..454
Crossrefs
Column k=12 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(b(u+j-1, o-j, `if`(t in [0, 3], 1, 2)), j=1..o)+`if`(t<3, add(b(u-j, o+j-1, `if`(t=2, 3, 0)), j=1..u), 0)) end: a:= n-> b(n, 0, 0): seq(a(n), n=0..30); # Alois P. Heinz, Oct 07 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[b[u+j-1, o-j, If[MemberQ[{0, 3}, t], 1, 2]], {j, 1, o}] + If[t<3, Sum[b[u-j, o+j-1, If[t == 2, 3, 0]], {j, 1, u}], 0]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.942475018599378010857210678432739023432859616925664352..., c = 1.284751954587372264742653082845227922651555734159194626... . - Vaclav Kotesovec, Aug 29 2014
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 07 2013
a(0)=1 from Alois P. Heinz, Apr 20 2022