A177524 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, down.
1, 1, 2, 6, 24, 120, 715, 4970, 39480, 352800, 3502800, 38255900, 455795100, 5883052500, 81774966000, 1217871018000, 19346879737625, 326549862671250, 5835951345093750, 110091785625495000, 2186122850020215000, 45580964489553559375, 995625115672520581250
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..170
Crossrefs
Columns k=16,30 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o=0, 1, add(b(u-j, o+j-1, `if`(t=1, 1, t+1)), j=1..u)+ add(b(u+j-1, o-j, 2), j=1..o))) end: a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)): seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o == 0, 1, Sum[b[u - j, o + j - 1, If[t == 1, 1, t + 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]]; a[n_] := If[n == 0, 1, Sum[b[j - 1, n - j, 1], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.9928637443921790380857377558103269268777241137790934589694993..., c = 1.0369478195304845650491426260146999487076420703190374702807322... . - Vaclav Kotesovec, Aug 29 2014
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 20 2013