A177527 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up.
1, 1, 2, 6, 24, 120, 694, 4676, 35952, 310464, 2984176, 31536583, 363591384, 4541789148, 61089594448, 880428095803, 13534614549829, 221066397540186, 3823205871530350, 69792946997645295, 1341134146478847104, 27059669661295560098, 571973335506443017436
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..170
Crossrefs
Columns k=19,25 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o=0, 1, add(b(u-j, o+j-1, [1,3,4,1,3][t]), j=1..u)+ add(b(u+j-1, o-j, [2,2,2,5,6][t]), j=1..o))) end: a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)): seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o + t < 6, (u + o)!, Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.96079505301634594056671142147783512755736606..., c = 1.2266835832918378326758739778897107143678546... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 21 2013