A177531 Number of permutations of {1,...,n} avoiding adjacent step pattern up, up, down, down, down.
1, 1, 2, 6, 24, 120, 710, 4900, 38640, 342720, 3376800, 36603975, 432850200, 5545086300, 76500496800, 1130799033000, 17829310686875, 298684478837750, 5298029559119250, 99196696006173000, 1955043380032965000, 40458045505003152500, 877115498011253207500
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Columns k=24,28 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o+t<6, (u+o)!, add(b(u-j, o+j-1, [1, 1, 4, 5, 6][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 3, 3, 2, 2][t]), j=1..o))) end: a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)): seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o + t < 6, (u + o)!, Sum[b[u - j, o + j - 1, {1, 1, 4, 5, 6}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 3, 3, 2, 2}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.9854377717049233842779147747459503689075051143455990422632259770134..., c = 1.077575450109847511736343360036618345267367515043056772740942767... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 21 2013