A177534 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, down, down.
1, 1, 2, 6, 24, 120, 720, 5034, 40224, 361584, 3611520, 39679200, 475580160, 6175139244, 86348433264, 1293675609960, 20674025187840, 351037594569600, 6311110770685440, 119767524064039062, 2392482308124881520, 50181968955048369480, 1102681392427432825920
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Columns k=32,62 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!, add(b(u-j, o+j-1, `if`(t=1, 1, t+1)), j=1..u)+ add(b(u+j-1, o-j, 2), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!, Sum[b[u - j, o + j - 1, If[t == 1, 1, t + 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.99880260814201465936657157017137377717606254472452619578417647021809..., c = 1.0072348951217738673562195411256011395302888145883911883919110478... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(18)-a(22) from Alois P. Heinz, Oct 21 2013