A177535 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, down, up.
1, 1, 2, 6, 24, 120, 720, 5011, 39856, 356616, 3545280, 38768400, 462487631, 5977005477, 83186290826, 1240460869290, 19730730733920, 333451122953921, 5966845400766578, 112703780178989573, 2240828272067529040, 46780834679854338540, 1023129822229674425971
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Column k=33 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!, add(b(u-j, o+j-1, [1, 3, 4, 5, 6, 1][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 2, 2, 2, 2, 7][t]), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Oct 22 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!, Sum[b[u - j, o + j - 1, {1, 3, 4, 5, 6, 1}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 2, 2, 2, 2, 7}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.9941229421721758523485136789468386588070503717223814960732680334748287519..., c = 1.036291721564809563490641628457988175489113294377683691938047314400726... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 22 2013