A177538 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, down, down.
1, 1, 2, 6, 24, 120, 720, 4941, 38736, 341496, 3354939, 36244098, 427006404, 5448087216, 74864913552, 1102353646680, 17314190063037, 288936154260522, 5105249306345502, 95216905474054011, 1869347069817467076, 38535066745735462848, 832195054189721911392
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Columns k=36,54 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!, add(b(u-j, o+j-1, [1, 3, 4, 1, 6, 7][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 2, 2, 5, 2, 2][t]), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Oct 22 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!, Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 6, 7}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 2, 2}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.98162590771907099517875504406285427992737137228..., c = 1.1133866874983726502599853171771818959460675... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 22 2013