A177541 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up, up.
1, 1, 2, 6, 24, 120, 720, 4990, 39520, 352080, 3484800, 37936800, 450606300, 5797965980, 80341280840, 1192794269400, 18889568419200, 317838157969125, 5662578565559400, 106488682710940108, 2107992477960872320, 43815112964794432080, 954074378001971825930
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
Columns k=39,57 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o=0, 1, add(b(u-j, o+j-1, [1, 3, 4, 1, 3, 3][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 2, 2, 5, 6, 7][t]), j=1..o))) end: a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)): seq(a(n), n=0..25); # Alois P. Heinz, Oct 20 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!, Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3, 3}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6, 7}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.98977300089321592191180343193285102663621683..., c = 1.06422234334396404091033045795479059186356... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 20 2013