A177542 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, down, down, down.
1, 1, 2, 6, 24, 120, 720, 4976, 39296, 349056, 3444480, 37382400, 442506240, 5674931536, 78376004800, 1159755383520, 18305304913920, 306984257241600, 5451042337781760, 102170107109747648, 2015786374006453760, 41759419845040968960, 906291283573022730240
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..175
Crossrefs
Columns k=40,58 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!, add(b(u-j, o+j-1, [1, 3, 1, 5, 6, 7][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 2, 4, 2, 4, 2][t]), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!, Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 6, 7}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 4, 2}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.9864854125625269564394281614736489845203102136102401801..., c = 1.08769348749685060865572679319744616257509477068722272... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 24 2013