A177545 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, down, down.
1, 1, 2, 6, 24, 120, 720, 4929, 38544, 338904, 3309120, 35521200, 415704960, 5271197205, 71977504692, 1053008012790, 16431803844480, 272435676775200, 4782657847248000, 88624515772410633, 1728678866577622920, 35404942557640528620, 759655818204633900000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..190
Crossrefs
Columns k=44,50 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!, add(b(u-j, o+j-1, [1, 3, 1, 3, 6, 7][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 2, 4, 5, 2, 4][t]), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Oct 22 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!, Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 6, 7}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 2, 4}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.9752820884477652193970997660966130503977714987577677..., c = 1.1721546677937404500752065441275892023818795500231... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 22 2013