A177549 Number of permutations of {1,...,n} avoiding adjacent step pattern up, up, down, down, up, up.
1, 1, 2, 6, 24, 120, 720, 4969, 39184, 347544, 3424320, 37150741, 439774085, 5639099103, 77873192126, 1152123776419, 18181366630226, 304851804959519, 5412206888619242, 101424438933572112, 2000731009697485843, 41440364401733715980, 899211137893661967405
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Crossrefs
Column k=51 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!, add(b(u-j, o+j-1, [1, 1, 4, 5, 1, 1][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 3, 3, 2, 6, 7][t]), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Oct 23 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t>6, 0, If[u+o+t<7, (u+o)!, Sum[b[u-j, o+j-1, {1, 1, 4, 5, 1, 1}[[t]]], {j, 1, u}] + Sum[b[u+j-1, o-j, {2, 3, 3, 2, 6, 7}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 11 2016, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.986314277283772995320277545416339641125925..., c = 1.08332315844132327949722334709840176297166... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 23 2013