A177550 Number of permutations of {1,...,n} avoiding adjacent step pattern up, up, down, up, down, down.
1, 1, 2, 6, 24, 120, 720, 4950, 38880, 343440, 3369600, 36352800, 427680000, 5452027218, 74846801304, 1100895311340, 17272089457920, 287920937620800, 5081935953473280, 94681381716805374, 1856848184953043760, 38236452673395920040, 824863858830361247040
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Column k=52 of A242784.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!, add(b(u-j, o+j-1, [1, 1, 4, 1, 6, 7][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 3, 3, 5, 3, 2][t]), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Oct 29 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!, Sum[b[u - j, o + j - 1, {1, 1, 4, 1, 6, 7}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 3, 3, 5, 3, 2}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n!, where d = 0.98057763883233672986361278986560196505968263650602..., c = 1.129827226571293707156672292645277720979050046894688... . - Vaclav Kotesovec, Jan 17 2015
Extensions
a(17)-a(22) from Alois P. Heinz, Oct 29 2013