cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177677 The maximum integer dimension in which the volume of the hypersphere of radius n remains larger than 1.

Original entry on oeis.org

12, 62, 147, 266, 419, 607, 828, 1084, 1375, 1699, 2057, 2450, 2877, 3338, 3833, 4362, 4926, 5523, 6155, 6821, 7521, 8256, 9024, 9827, 10664, 11535, 12440, 13379, 14353, 15360, 16402, 17478, 18588, 19732, 20911, 22123, 23370, 24651, 25966, 27315
Offset: 1

Views

Author

Michel Lagneau, May 10 2010

Keywords

Comments

The volume of the d-dimensional hypersphere of radius n is V= Pi^(d/2) * n^d / Gamma(1 + d/2).
For fixed radius, V -> 0 as d->infinity, so there is a dimension d for which V(n,d) > 1 but V(n,d+1) < 1, which defines the entry in the sequence.

Examples

			a(n=2)=62 because Pi^(62/2) * 2^62/GAMMA(1 + (62/2)) =1.447051 and Pi^(63/2)* 2^63 / Gamma(1 + (63/2)) =0.9103541.
		

Crossrefs

Programs

  • Maple
    with(numtheory): n0:=50: T:=array(1..n0): for r from 1 to n0 do: x:=2: for n from 1 to 1000000 while(x>=1) do: x:= floor(evalf((r^n * Pi^(n/2))/GAMMA(1 + n/2))):k:=n:od:T[r]:=k-1:od:print(T):

Formula

a(n) = max {d: Pi^d/2 * n^d / Gamma(1+d/2) > 1}.

Extensions

Use of variables standardized. Definition simplified, comments tightened, unspecific reference and superfluous parentheses removed - R. J. Mathar, Oct 20 2010