A177677 The maximum integer dimension in which the volume of the hypersphere of radius n remains larger than 1.
12, 62, 147, 266, 419, 607, 828, 1084, 1375, 1699, 2057, 2450, 2877, 3338, 3833, 4362, 4926, 5523, 6155, 6821, 7521, 8256, 9024, 9827, 10664, 11535, 12440, 13379, 14353, 15360, 16402, 17478, 18588, 19732, 20911, 22123, 23370, 24651, 25966, 27315
Offset: 1
Keywords
Examples
a(n=2)=62 because Pi^(62/2) * 2^62/GAMMA(1 + (62/2)) =1.447051 and Pi^(63/2)* 2^63 / Gamma(1 + (63/2)) =0.9103541.
Links
- Eric Weisstein, Stirling Series, MathWorld.
- Wikipedia, Hypersphere
Programs
-
Maple
with(numtheory): n0:=50: T:=array(1..n0): for r from 1 to n0 do: x:=2: for n from 1 to 1000000 while(x>=1) do: x:= floor(evalf((r^n * Pi^(n/2))/GAMMA(1 + n/2))):k:=n:od:T[r]:=k-1:od:print(T):
Formula
a(n) = max {d: Pi^d/2 * n^d / Gamma(1+d/2) > 1}.
Extensions
Use of variables standardized. Definition simplified, comments tightened, unspecific reference and superfluous parentheses removed - R. J. Mathar, Oct 20 2010
Comments