A177686 If a1a2a3 is a 3-digit integer in a concatenated form, we define two permutations of its digits as follows: P1(a1a2a3)=a2a3a1 and P2(a1a2a3)=a1a3a2, then we take the absolute value of their difference. Thus we form a sequence: a1a2a3, abs(P1(a1a2a3)-P2(a1a2a3)), and so on.
99, 891, 198, 792, 297, 693, 396, 594, 495
Offset: 1
Examples
Starting with 100, we get abs(001-100)=099, then abs(990-099)=891, then abs(918-819)=099, etc. So 100, 099, 891, 099, ... (the cycle is 099, 891). Each three-digit number ends up in a cycle of two terms (such as: 99 and 891, or 198 and 792, or 297 and 693, or 396 and 594), or in a constant 495 (as in Kaprekar's routine). Starting with 495, we get abs(954-459)=495 (cycle of one term).
Links
- F. Smarandache, Proposed Problems of Mathematics, Vol. II, State University of Moldova Press, Kishinev, pp. 83-84, 1997.
- F. Smarandache, Generalization and alternatives of Kaprekar's routine, Multispace & Multistructure / Neutrosophic Transdisciplinarity, Northern-European Publishers, pp. 555-559, Finland, 2010. arXiv:1005.3235
Formula
abs(P1(a1a2a3)-P2(a1a2a3)) = abs(a2a3a1-a1a3a2) = 99x(a2-a1).
Extensions
Added keyword:base,fini,full as there are only 9 different values obtained by the abs() starting from any a1a2a3 in the range 100 to 999 R. J. Mathar, May 15 2010
Comments