A177688 Numbers n such that (n+2)//n - (n+1) is prime, where // represents the concatenation of decimals.
0, 1, 4, 6, 7, 9, 12, 13, 15, 18, 19, 22, 25, 28, 31, 33, 39, 46, 48, 49, 52, 60, 61, 64, 67, 73, 75, 84, 85, 88, 90, 99, 100, 103, 106, 132, 133, 135, 136, 138, 142, 156, 160, 163, 171, 178, 181, 183, 187, 190, 198, 201, 202, 211, 220, 222, 229, 238, 241, 246, 252
Offset: 1
Examples
2//0 - 1 = 20 - 1 = 19 = prime(8), 0 is first term; 3//1 - 2 = 31 - 2 = 29 = prime(10), 1 is 2nd term; 6//4 - 5 = 64 - 5 = 59 = prime(17), 4 is 3rd term.
Programs
-
Mathematica
n2ncQ[n_]:=PrimeQ[FromDigits[Join[IntegerDigits[n+2], IntegerDigits[ n]]]- n-1]; Select[Range[0,300],n2ncQ] (* Harvey P. Dale, Feb 24 2011 *)
Comments