cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177690 Denominators of the Inverse Akiyama-Tanigawa transform of the aerated even-indexed Bernoulli numbers 1, 0, 1/6, 0, -1/30, 0, 1/42, ...

Original entry on oeis.org

1, 1, 12, 6, 120, 120, 280, 140, 5040, 5040, 55440, 55440, 720720, 720720, 720720, 360360, 24504480, 24504480, 155195040, 155195040, 31039008, 10346336, 237965728, 713897184, 17847429600, 17847429600, 160626866400, 22946695200
Offset: 0

Views

Author

Paul Curtz, May 11 2010

Keywords

Comments

See A177427 (numerators) for the description of the Akiyama-Tanigawa array of this sequence of fractions, T(0,k) = 1, 1, 13/12, 7/6, 149/120, 157/120, ...
If we add a zero in front and construct an array A(n,k) with successive differences A(n,k) = A(n-1,k+1)-A(n-1,k), the array A(.,.) becomes
0, 1, 1, 13/12, 7/6, 149/120, 157/120, 383/280, 199/140, 7409/5040, ...
1, 0, 1/12, 1/12, 3/40, 1/15, 5/84, 3/56, 7/144, 2/45, 9/220, ...
-1, 1/12, 0, -1/120, -1/120, -1/140, -1/168, -5/1008, -1/240, -7/1980, ...
13/12, -1/12, -1/120, 0, 1/840, 1/840, 1/1008, 1/1260, 1/1584, ...
-7/6, 3/40, 1/120, 1/840, 0, -1/5040, -1/5040, -1/6160, -1/7920, ...
149/120, -1/15, -1/140, -1/840, -1/5040, 0, 1/27720, 1/27720, ...
-157/120, 5/84, 1/168, 1/1008, 1/5040, 1/27720, 0, -1/144144, -1/144144, ...
On the diagonal, A(n,n)=0. The left column A(n,0) = (-1)^(n+1)*A(0,k) is a signed variant of the top row, which means the sequence is some eigensequence under the inverse binomial transform (see A174341 for other examples). This eigen-feature would remain if the same number of top rows and left columns were removed from A(.,.).

Crossrefs

Cf. A177427 (numerators).

Programs

  • Maple
    read("transforms3") ; [seq(bernoulli(2*n),n=0..20)] ; AERATE(%,1) ; AKIYAMATANIGAWAi(%) ; apply(denom,%) ; # R. J. Mathar, Jan 16 2011
  • Mathematica
    t[n_, 0] := BernoulliB[n]; t[1, 0]=0; t[n_, k_] := t[n, k] = (t[n, k-1] + (k-1)*t[n, k-1] - t[n+1, k-1])/k; Table[t[0, k], {k, 0, 27}] // Denominator (* Jean-François Alcover, Aug 09 2012 *)