cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A177888 P_n(k) with P_0(z) = z+1 and P_n(z) = z + P_(n-1)(z)*(P_(n-1)(z)-z) for n>1; square array P_n(k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 5, 7, 1, 5, 7, 17, 43, 1, 6, 9, 31, 257, 1807, 1, 7, 11, 49, 871, 65537, 3263443, 1, 8, 13, 71, 2209, 756031, 4294967297, 10650056950807, 1, 9, 15, 97, 4691, 4870849, 571580604871, 18446744073709551617, 113423713055421844361000443, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 14 2010

Keywords

Examples

			Square array P_n(k) begins:
  1,              2,          3,      4,       5,    6,    7,     8, ...
  1,              3,          5,      7,       9,   11,   13,    15, ...
  1,              7,         17,     31,      49,   71,   97,   127, ...
  1,             43,        257,    871,    2209, 4691, 8833, 15247, ...
  1,           1807,      65537, 756031, 4870849,  ...
  1,        3263443, 4294967297,    ...
  1, 10650056950807,        ...
		

Crossrefs

Columns k=0-10 give: A000012, A000058(n+1), A000215, A000289(n+1), A000324(n+1), A001543(n+1), A001544(n+1), A067686, A110360(n+1), A110368(n+1), A110383(n+1).
Rows n=0-2 give: A000027(k+1), A005408, A056220(k+1).
Main diagonal gives A252730.
Coefficients of P_n(z) give: A177701.

Programs

  • Maple
    p:= proc(n) option remember;
          z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
        end:
    seq(seq(p(n)(d-n), n=0..d), d=0..8);
  • Mathematica
    p[n_] := p[n] = Function[z, z + If [n == 0, 1, p[n-1][z]*(p[n-1][z]-z)] ]; Table [Table[p[n][d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
Showing 1-1 of 1 results.