A177733 Integers that can be expressed as the sum of two or more positive consecutive numbers (the largest being even) AND also as the sum of two or more positive consecutive numbers (the largest being odd).
9, 15, 18, 21, 27, 30, 33, 35, 36, 39, 42, 45, 49, 51, 54, 55, 57, 60, 63, 66, 69, 70, 72, 75, 77, 78, 81, 84, 87, 90, 91, 93, 95, 98, 99, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 121, 123, 126, 129, 132, 133, 135, 138, 140, 141, 143, 144, 147, 150, 153, 154
Offset: 1
Keywords
Examples
9 is in the sequence because 2+3+4=9=4+5. 15 is in the sequence because 7+8=15=1+2+3+4+5.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local a,b,x,y,todd,teven; todd:= false; teven:= false; for a in select(type,numtheory:-divisors(n),odd) minus {1} do b:= 2*n/a; x:= (a+b+1)/2; if x::odd then todd:= true; if teven then return true fi else teven:= true; if todd then return true fi fi od: false end proc: select(filter, [$1..200]); # Robert Israel, May 01 2023
-
Mathematica
z=200;lst1={};Do[c=a;Do[c+=b;If[c<=2*z,AppendTo[lst1,c]],{b,a-1,1,-1}],{a,1,z,2}];Union@lst1; z=200;lst2={};Do[c=a;Do[c+=b;If[c<=2*z,AppendTo[lst2,c]],{b,a-1,1,-1}],{a,2,z,2}]; Intersection[lst1,lst2]
Comments