A177762 Beta polynomials (coefficients in descending order, triangle read by rows).
1, 1, 1, -1, 1, -2, -2, 1, -3, -3, 5, 1, -4, -4, 16, 16, 1, -5, -5, 35, 35, -61, 1, -6, -6, 64, 64, -272, -272, 1, -7, -7, 105, 105, -791, -791, 1385, 1, -8, -8, 160, 160, -1856, -1856, 7936, 7936, 1, -9, -9, 231, 231, -3801, -3801, 28839, 28839, -50521
Offset: 0
Examples
1 1 z - 1 z^2 - 2 z - 2 z^3 - 3 z^2 - 3 z + 5 z^4 - 4 z^3 - 4 z^2 + 16 z + 16 z^5 - 5 z^4 - 5 z^3 + 35 z^2 + 35 z - 61
Links
- Peter Luschny, Swiss-Knife polynomials and Euler numbers, Blog on OEIS
- Eric Weisstein's World of Mathematics, Dirichlet Beta Function
Crossrefs
Cf. A000111.
Programs
-
Maple
beta := proc(n, z) option remember; local k; if n = 0 then 1 else add(`if`(k mod 2 = 1, 0, binomial(n,k)*beta(k,0)*(z-1)^(n-k-1)),k=0..n-1) fi end:
-
Mathematica
beta[n_, z_] := beta[n, z] = If[n == 0, 1, Sum[If[OddQ[k], 0, Binomial[n, k]*beta[k, 0]*(z-1)^(n-k-1)], {k, 0, n-1}]]; Table[CoefficientList[beta[n, z], z] // Reverse, {n, 0, 10}] (* Jean-François Alcover, Jun 17 2019, from Maple *)
Comments