cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177762 Beta polynomials (coefficients in descending order, triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -2, -2, 1, -3, -3, 5, 1, -4, -4, 16, 16, 1, -5, -5, 35, 35, -61, 1, -6, -6, 64, 64, -272, -272, 1, -7, -7, 105, 105, -791, -791, 1385, 1, -8, -8, 160, 160, -1856, -1856, 7936, 7936, 1, -9, -9, 231, 231, -3801, -3801, 28839, 28839, -50521
Offset: 0

Views

Author

Peter Luschny, May 13 2010

Keywords

Comments

beta_n(x) = sum_{k=0..n-1} C(n,k)b(-k)(z-1)^(n-k-1) for n > 0 and beta_0(x)=1. Here b(s) = 2*4^(-s)(zeta(s,1/4)-zeta(s,3/4)) where zeta(s,t) denotes the Hurwitz zeta function.
beta_n(0) are the signed Euler numbers 1,1,-1,-2,5,16,-61,... The sign pattern is the same as in the egf. tanh + sech.

Examples

			1
1
z - 1
z^2 - 2 z - 2
z^3 - 3 z^2 - 3 z + 5
z^4 - 4 z^3 - 4 z^2 + 16 z + 16
z^5 - 5 z^4 - 5 z^3 + 35 z^2 + 35 z - 61
		

Crossrefs

Cf. A000111.

Programs

  • Maple
    beta := proc(n, z) option remember; local k;
    if n = 0 then 1 else add(`if`(k mod 2 = 1, 0,
    binomial(n,k)*beta(k,0)*(z-1)^(n-k-1)),k=0..n-1) fi end:
  • Mathematica
    beta[n_, z_] := beta[n, z] = If[n == 0, 1, Sum[If[OddQ[k], 0, Binomial[n, k]*beta[k, 0]*(z-1)^(n-k-1)], {k, 0, n-1}]];
    Table[CoefficientList[beta[n, z], z] // Reverse, {n, 0, 10}] (* Jean-François Alcover, Jun 17 2019, from Maple *)