A177790 Number of paths from (0,0) to (n,n) avoiding 3 or more consecutive east steps and 3 or more consecutive north steps.
1, 2, 6, 14, 34, 84, 208, 518, 1296, 3254, 8196, 20700, 52404, 132942, 337878, 860142, 2192902, 5598144, 14308378, 36610970, 93770358, 240390602, 616787116, 1583765724, 4069672444, 10464501074, 26924530158, 69315481778, 178545361842, 460138256784
Offset: 0
Examples
For n=3, the a(3)=14 possible arrangements are 001011, 001101, 010011, 010101, 010110, 011001, 011010, 100101, 100110, 101001, 101010, 101100, 110010, and 110100. - _Dave R.M. Langers_, Apr 07 2016
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..750
- Daiki Miyahara, Léo Robert, Pascal Lafourcade, So Takeshige, Takaaki Mizuki, Kazumasa Shinagawa, Atsuki Nagao, and Hideaki Sone, Card-Based ZKP Protocols for Takuzu and Juosan, 10th International Conference on Fun with Algorithms (FUN 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 20:1-21.
Crossrefs
Equals twice A003440 (number of binary vectors with restricted repetitions).
Programs
-
Maple
b:= proc(i, j, k) option remember; `if`(i<0 or j<0, 0, `if`(i=0 and j=0, 1, `if`(k<2, b(i-1, j, max(k, 0)+1), 0)+ `if`(k>-2, b(i, j-1, min(k, 0)-1), 0))) end: a:= n-> b(n, n, 0): seq(a(n), n=0..30); # Alois P. Heinz, Jun 01 2011
-
Mathematica
b[i_, j_, k_] := b[i, j, k] = If[i<0 || j<0, 0, If[i == 0 && j == 0, 1, If[k<2, b[i-1, j, Max[k, 0]+1], 0] + If[k > -2, b[i, j-1, Min[k, 0] - 1], 0]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
Formula
a(n) = Sum_{i=0..floor(n/2)} 2*C(n-i,i)^2 + C(n-i,i)*C(n-i-1,i+1) + C(n-i,i)*C(n-i+1,i-1).
a(n) = [x^n y^n] (-(1+x+x^2)*(1+y+y^2) / (-1+x*y+x*y^2+x^2*y+x^2*y^2)).
G.f.: 1 + ((1-t)^2*sqrt((1+t+t^2)*(1-3*t+t^2))-(1-3*t+t^2)*(1+t^2)) / (t^2*(1-3*t+t^2)).
Recurrence: (n-2)*(n-1)*(n+2)*a(n) = 2*(n-2)*n*(n+1)*a(n-1) + (n-1)*(n^2 - 2*n - 4)*a(n-2) + 2*(n-3)*(n-2)*n*a(n-3) - (n-4)*(n-1)*n*a(n-4). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ (3+sqrt(5))^n * sqrt((15+7*sqrt(5))/(5*Pi*n))/2^(n-1/2). - Vaclav Kotesovec, Aug 18 2013
Extensions
Edited by Alois P. Heinz, Jun 03 2011
Comments