A177826 Sub-triangle of A060187: even-indexed entries of even-indexed rows.
1, 1, 1, 1, 230, 1, 1, 10543, 10543, 1, 1, 331612, 4675014, 331612, 1, 1, 9116141, 906923282, 906923282, 9116141, 1, 1, 237231970, 121383780207, 743288515164, 121383780207, 237231970, 1, 1, 6031771195, 13342139253321, 342917527152507, 342917527152507, 13342139253321, 6031771195, 1
Offset: 0
Examples
Triangle begins: {1}, {1, 1}, {1, 230, 1}, {1, 10543, 10543, 1}, {1, 331612, 4675014, 331612, 1}, {1, 9116141, 906923282, 906923282, 9116141, 1},
Crossrefs
Cf. A060187
Programs
-
Mathematica
p[x_, n_] = (1 - x)^(n + 1)*Sum[((2*k + 1)^n)*x^k, {k, 0, Infinity}]; t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]; Table[Table[t[n, 2*m], {m, 0, Floor[n/2]}], {n, 0, 20, 2}]; Flatten[%] (* Alternative recursion for A060187 *) m = 2; A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := A[n, k] = (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k] Table[A[n,k],{n,1,10,2},{k,1,n,2}] (* Alternative expansion for A060187 *) p[t_] = Exp[t] *x/(-Exp[2*t] + x) Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + \ 1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]