cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177847 Array T(n,m)= (n*m)!*Beta(n, m) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 60, 60, 6, 24, 2016, 12096, 2016, 24, 120, 120960, 7983360, 7983360, 120960, 120, 720, 11404800, 12454041600, 149448499200, 12454041600, 11404800, 720, 5040, 1556755200, 38109367296000, 8688935743488000, 8688935743488000
Offset: 1

Views

Author

Roger L. Bagula, May 14 2010

Keywords

Comments

Beta(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y).

Examples

			The array starts in row n=1 as:
1,       1,           2,                6,                      24, ...
1,       4,          60,             2016,                  120960, ...
2,      60,       12096,          7983360,             12454041600, ...
6,    2016,     7983360,     149448499200,        8688935743488000, ...
24, 120960, 12454041600, 8688935743488000, 24620968322747596800000, ...
		

Crossrefs

Cf. A060854.

Programs

  • Maple
    A177847 := proc(n,m) (n*m)!*Beta(n,m) ; end proc:
    seq (seq (A177847(n, 1+d-n), n=1..d), d=1..10);
  • Mathematica
    t[n_, m_] = (n*m)!*Beta[n, m];
    a = Table[Table[t[n, m], {m, 1, 10}], {n, 1, 10}];
    Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
    Flatten[%]

Formula

T(n,m) = Gamma(n*m+1)*Gamma(n)*Gamma(m)/Gamma(n+m).
T(1,m) = A000142(m-1).
T(n,m) = T(m,n).