A177875 The number of decimal digits in Lucas-Lehmer numbers A003010(k-2) divisible by 2^k-1.
2, 5, 19, 1172, 18742, 74967, 307062002, 329705313529178423, 88504596182827979077122168, 23200948861751257747193113585514, 24327958153659686843520766271043070385
Offset: 1
Examples
k = 3: Lucas-Lehmer number A003010(1) = 14 is divisible by 2^3-1 = 7 and has 2 decimal digits. Hence A177874(1) = 2 is in the sequence. k = 7: Lucas-Lehmer number A003010(5) = 2005956546822746114 is divisible by 2^7-1 = 127 and has 19 decimal digits. Hence A177874(5) = 19 is in the sequence.
Programs
-
Magma
T:=[ n eq 1 select 4 else Self(n-1)^2-2: n in [1..24] ]; a003010:=func< n | T[n+1] >; a177874:=func< n | #Intseq(a003010(n)) >; [ a177874(n): n in [0..#T-1] | a003010(n) mod (2^(n+2)-1) eq 0];
-
Mathematica
a=Sqrt[6]; Reap[Do[a=a^2-2; If[Mod[a, 2^(n+1)-1]==0, Sow[Length[IntegerDigits[a]]]], {n, 26}]][[2, 1]]
Extensions
a(7)-a(11) from D. S. McNeil, Dec 13 2010
Comments