cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A177899 Nonsquarefree numbers that are not in A177880.

Original entry on oeis.org

8, 16, 24, 27, 40, 48, 54, 56, 80, 81, 88, 104, 112, 120, 125, 135, 136, 152, 162, 168, 176, 184, 189, 208, 216, 232, 240, 248, 250, 264, 270, 272, 280, 296, 297, 304, 312, 328, 336, 343, 344, 351, 368, 375, 376, 378, 405, 408, 424, 432, 440, 456, 459, 464, 472, 488, 496, 512, 513, 520, 528, 536
Offset: 1

Views

Author

Vladimir Shevelev, Dec 15 2010

Keywords

Crossrefs

Programs

  • Maple
    isA005836 := proc(n) convert(convert(n,base,3),set) intersect {2} ; % = {} ; end proc:
    isA177880 := proc(n) local f; for f in ifactors(n)[2]  do if not isA005836(op(2,f)) then return true; end if;  end do: return false; end proc:
    isA177899 := proc(n) not numtheory[issqrfree](n) and not isA177880(n) ; end proc:
    for n from 1 to 1000 do if isA177899(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Dec 20 2010
  • Mathematica
    Select[Range[500], AnyTrue[(e = FactorInteger[#][[;; , 2]]), #1 > 1 &] && AllTrue[e, DigitCount[#1, 3, 2] == 0 &] &] (* Amiram Eldar, Aug 31 2020 *)

Formula

Let B(x) be the counting function for terms not exceeding x. Then for x tends to infinity, B(x)=C*x+o(x^(0.5+eps), where C = Product_{i=p^(3^k) with prime p and k>=0}(1-1/(i^2+i+1)) - 1/zeta(2).
Showing 1-1 of 1 results.