A177886 The number of isomorphism classes of Latin quandles (a.k.a. left distributive quasigroups) of order n.
1, 0, 1, 1, 3, 0, 5, 2, 8, 0, 9, 1, 11, 0, 5, 9, 15, 0, 17, 3, 7, 0, 21, 2, 34, 0, 62, 7, 27, 0, 29, 8, 11, 0, 15, 9, 35, 0, 13, 6, 39, 0, 41, 9, 36, 0, 45
Offset: 1
Examples
a(2) = 0 since the only quandle of order 2 has multiplication table with rows [1,1] and [2,2].
Links
- W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, Quandle Colorings of Knots and Applications, arXiv preprint arXiv:1312.3307, 2013
- G. Ehrman, A. Gurpinar, M. Thibault, D. Yetter, Some Sharp Ideas on Quandle Construction
- A. Hulpke, D. Stanovský, P. Vojtěchovský, Connected quandles and transitive groups, arXiv:1409.2249 [math.GR], 2014.
- S. Nelson, A polynomial invariant of finite quandles, arXiv:math/0702038 [math.QA], 2007.
- S. K. Stein, On the Foundations of Quasigroups, Transactions of American Mathematical Society, 85 (1957), 228-256.
- Leandro Vendramin, On the classification of quandles of low order, arXiv:1105.5341v1 [math.GT].
- Leandro Vendramin and Matías Graña, Rig, a GAP package for racks and quandles.
Programs
-
GAP
(using the Rig package) LoadPackage("rig"); a:=[1,0];; Print(1,","); Print(0,","); for n in [3..35] do a[n]:=0; for i in [1..NrSmallQuandles(n)] do if IsLatin(SmallQuandle(n,i)) then a[n]:=a[n]+1; fi; od; Print(a[n],", "); od; # W. Edwin Clark, Nov 26 2011
Extensions
Added fact due to S. K. Stein that a(4k+2) = 0 and a reference to Stein's paper.
a(11)-a(35) from W. Edwin Clark, Nov 26 2011
Links to the rig Gap package by W. Edwin Clark, Nov 26 2011
a(36)-a(47) by David Stanovsky, Oct 01 2014
Comments