A177944 Array T(n,m) = 1/Beta(n+1, m+1) - n - m read by antidiagonals.
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 26, 16, 1, 1, 25, 55, 55, 25, 1, 1, 36, 99, 134, 99, 36, 1, 1, 49, 161, 273, 273, 161, 49, 1, 1, 64, 244, 496, 622, 496, 244, 64, 1, 1, 81, 351, 831, 1251, 1251, 831, 351, 81, 1
Offset: 0
Examples
The array starts in row n=0, column m=0 as: 1,....1,....1,....1,.....1,.....1,.....1,.....1, 1,....4,....9,...16,....25,....36,....49,....64, A000290 1,....9,...26,...55,....99,...161,...244,...351, A154560 1,...16,...55,..134,...273,...496,...831,..1310, 1,...25,...99,..273,...622,..1251,..2300,..3949, 1,...36,..161,..496,..1251,..2762,..5533,.10284, 1,...49,..244,..831,..2300,..5533,.12000,.24011, 1,...64,..351,.1310,..3949,.10284,.24011,.51466,
Programs
-
Mathematica
Clear[t, n]; t[n_, m_] = 1/Beta[n + 1, m + 1] - n - m; a = Table[Table[t[n, m], {m, 0, 10}], {n, 0, 10}]; Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]; Flatten[%]
Formula
T(n,m) = Gamma(n+m+2)/(Gamma(n+1)*Gamma(m+1)) - n - m = T(m,n).
Extensions
Examples written in natural order, closed formula for antidiag. sum - The Assoc. Eds. of the OEIS, Nov 03 2010
Comments