cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177955 Partial sums of A045542.

Original entry on oeis.org

3, 10, 18, 33, 57, 83, 114, 149, 197, 260, 340, 439, 559, 683, 810, 953, 1121, 1316, 1531, 1755, 1997, 2252, 2540, 2863, 3205, 3565, 3964, 4404, 4887, 5398, 5926, 6501, 7125, 7800, 8528, 9311, 10151, 11050, 12010, 13009, 14032, 15120, 16275, 17499
Offset: 1

Views

Author

Jonathan Vos Post, May 16 2010

Keywords

Comments

Partial sums of sub-perfect powers: perfect powers (squares, cubes, etc.) minus 1. The subsequence of primes in the partial sum begins: 3, 83, 149, 197, 439, 683, 953, 1531, 1997, 9311, 10151, 13009. The subsequence of subperfect powers in the partial sum (numbers n such that n-1 is a perfect power) begins: 10 (because 10-1=9=3^2), 197 because 197-1=196=2^2 * 7^2.

Examples

			a(40) = 3 + 7 + 8 + 15 + 24 + 26 + 31 + 35 + 48 + 63 + 80 + 99 + 120 + 124 + 127 + 143 + 168 + 195 + 215 + 224 + 242 + 255 + 288 + 323 + 342 + 360 + 399 + 440 + 483 + 511 + 528 + 575 + 624 + 675 + 728 + 783 + 840 + 899 + 960 + 999 = 13009 is prime.
		

Crossrefs

Programs

  • Maple
    N:= 10^4:
    P:= sort(convert({seq(seq(i^p-1, p=2..floor(log[i](N))),i=2..isqrt(N))},list)):
    ListTools:-PartialSums(P); # Robert Israel, Jul 06 2017

Formula

a(n) = SUM[i=1..n] A045542(i) = SUM[i=1..n] (A001597(i+1) - 1) = (SUM[i=1..n] A001597(i+1)) - n.