A177975 Square array T(n,k) read by antidiagonals up. Each column is the first column in the matrix inverse of a triangular matrix that is the k-th differences of A051731 in the column direction.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 4, 7, 9, 4, 1, 0, 2, 14, 16, 14, 5, 1, 0, 6, 13, 34, 30, 20, 6, 1, 0, 4, 27, 43, 69, 50, 27, 7, 1, 0, 6, 26, 83, 107, 125, 77, 35, 8, 1, 0, 4, 39, 100, 209, 226, 209, 112, 44, 9, 1, 0, 10, 38, 155, 295, 461, 428, 329, 156, 54, 10, 1
Offset: 1
Examples
Table begins: 1..1...1...1....1.....1.....1......1......1.......1.......1 0..1...2...3....4.....5.....6......7......8.......9......10 0..2...5...9...14....20....27.....35.....44......54......65 0..2...7..16...30....50....77....112....156.....210.....275 0..4..14..34...69...125...209....329....494.....714....1000 0..2..13..43..107...226...428....749...1234....1938....2927 0..6..27..83..209...461...923...1715...3002....5004....8007 0..4..26.100..295...736..1632...3312...6270...11220...19162 0..6..39.155..480..1266..2975...6399..12825...24255...43692 0..4..38.182..641..1871..4789..11103..23807...47896...91367 0.10..65.285.1000..3002..8007..19447..43757...92377..184755 0..4..50.292.1209..4066.11837..30920..74139..165748..349438 0.12..90.454.1819..6187.18563..50387.125969..293929..646645 0..6..75.473.2166..8101.26202..75797.200479..492406.1136048 0..8.100.636.2976.11482.38523.115915.319231..816421.1960190 0..8.100.696.3546.14712.52548.167112.483879.1296064.3249312
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
PARI
T(n, k) = sumdiv(n, d, moebius(n/d)*binomial(d+k-2, d-1)); \\ Seiichi Manyama, Jun 12 2021
Formula
From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{d|n} mu(n/d) * binomial(d+k-2,d-1). (End)
Comments