cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178048 Triangle T(n, m) = ( |-A008292(n+1,m+1)^2 + 2*binomial(n, m)^2| + A008292(n+1,m+1)*binomial(n, m) )/2 read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 68, 68, 1, 1, 374, 2340, 374, 1, 1, 1742, 47012, 47012, 1742, 1, 1, 7524, 717948, 2942288, 717948, 7524, 1, 1, 31320, 9259560, 122248688, 122248688, 9259560, 31320, 1, 1, 127946, 106900560, 3895086794, 12203119800, 3895086794, 106900560, 127946, 1
Offset: 0

Views

Author

Roger L. Bagula, May 18 2010

Keywords

Examples

			The triangle starts in row n=0 with columns 0 <= m <= n as
  1;
  1,      1;
  1,      8,         1;
  1,     68,        68,          1;
  1,    374,      2340,        374,           1;
  1,   1742,     47012,      47012,        1742,          1;
  1,   7524,    717948,    2942288,      717948,       7524,         1;
  1,  31320,   9259560,  122248688,   122248688,    9259560,     31320,      1;
  1, 127946, 106900560, 3895086794, 12203119800, 3895086794, 106900560, 127946, 1;
		

Crossrefs

Programs

  • Maple
    A178048 := proc(n,m) binomial(n,m)*A008292(n+1,m+1)+abs( -A008292(n+1,m+1)^2+2*binomial(n,m)^2) ; %/2; end proc:
    seq(seq(A178048(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Nov 26 2010
  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_] = (Abs[2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2] + Binomial[n, m]*Eulerian[n + 1, m])/2;
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

T(n, m) = T(n,n-m).

Extensions

Definition corrected by R. J. Mathar, Nov 26 2010