A178048 Triangle T(n, m) = ( |-A008292(n+1,m+1)^2 + 2*binomial(n, m)^2| + A008292(n+1,m+1)*binomial(n, m) )/2 read by rows.
1, 1, 1, 1, 8, 1, 1, 68, 68, 1, 1, 374, 2340, 374, 1, 1, 1742, 47012, 47012, 1742, 1, 1, 7524, 717948, 2942288, 717948, 7524, 1, 1, 31320, 9259560, 122248688, 122248688, 9259560, 31320, 1, 1, 127946, 106900560, 3895086794, 12203119800, 3895086794, 106900560, 127946, 1
Offset: 0
Examples
The triangle starts in row n=0 with columns 0 <= m <= n as 1; 1, 1; 1, 8, 1; 1, 68, 68, 1; 1, 374, 2340, 374, 1; 1, 1742, 47012, 47012, 1742, 1; 1, 7524, 717948, 2942288, 717948, 7524, 1; 1, 31320, 9259560, 122248688, 122248688, 9259560, 31320, 1; 1, 127946, 106900560, 3895086794, 12203119800, 3895086794, 106900560, 127946, 1;
Programs
-
Maple
A178048 := proc(n,m) binomial(n,m)*A008292(n+1,m+1)+abs( -A008292(n+1,m+1)^2+2*binomial(n,m)^2) ; %/2; end proc: seq(seq(A178048(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Nov 26 2010
-
Mathematica
<< DiscreteMath`Combinatorica` t[n_, m_] = (Abs[2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2] + Binomial[n, m]*Eulerian[n + 1, m])/2; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
T(n, m) = T(n,n-m).
Extensions
Definition corrected by R. J. Mathar, Nov 26 2010