cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178078 Sequence with a (1,-1) Somos-4 Hankel transform.

Original entry on oeis.org

1, 0, 1, 1, 4, 12, 42, 147, 527, 1914, 7039, 26159, 98110, 370919, 1412211, 5410273, 20841886, 80685792, 313747624, 1224895416, 4799435482, 18867423751, 74394859297, 294152650731, 1166021396660, 4632969618849, 18448290723435
Offset: 0

Views

Author

Paul Barry, May 19 2010

Keywords

Comments

Hankel transform is A178079.

Programs

  • Mathematica
    Table[Sum[(Binomial[n-k, k]/(n-2*k+1))*Sum[Binomial[k, j]*Binomial[n-k-j-1, n-2*k-j]*3^(n-2*k-j)*(-2)^j*1^(k-j), {j, 0, k}], {k, 0, Floor[n/2]}] + ((1 + (-1)^n)*(2/3)^(n/2))/2, {n, 0, 50}]  (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    a(n) = sum(k=0,floor(n/2), sum(j=0,k, (binomial(n-k,k)/(n-2*k+1)) *binomial(k,j)*binomial(n-k-j-1,n-2*k-j)*3^(n-2*k-j)*(-2)^j));
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Sep 18 2018

Formula

a(n) = Sum_{k=0..floor(n/2)} ( (C(n-k,k)/(n-2k+1))*Sum_{i=0..k} C(k,i)*C(n-k-i-1,n-2*k-i)*3^(n-2*k-i)*(-2)^i*1^(k-i) ).