A178112 Number triangle T(n,k)=C(floor(n/2),floor(k/2))*(1+(-1)^(n-k))/2.
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 1, 0, 6, 0, 15, 0, 20, 0, 15, 0, 6, 0, 1
Offset: 0
Examples
Triangle begins 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 3, 0, 1, 0, 1, 0, 3, 0, 3, 0, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1 Production matrix is 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 Production matrix of inverse is 0, 1, -1, 0, 1, 0, 0, 0, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- Johann Cigler, Some remarks on the power product expansion of the q-exponential series, arXiv:2006.06242 [math.CO], 2020.
Programs
-
Maple
A178112 := proc(n,k) binomial(floor(n/2),floor(k/2))*( 1+(-1)^(n-k) )/2 ; end proc: seq(seq(A178112(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 10 2015
-
Mathematica
Table[Binomial[Floor[n/2], Floor[k/2]]*(1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 31 2020 *)
Comments