cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178113 Transform of C(n+1,floor((n+1)/2)) by A178112.

Original entry on oeis.org

1, 2, 2, 4, 5, 10, 13, 26, 35, 70, 96, 192, 267, 534, 750, 1500, 2123, 4246, 6046, 12092, 17303, 34606, 49721, 99442, 143365, 286730, 414584, 829168, 1201917, 2403834, 3492117, 6984234, 10165779, 20331558, 29643870, 59287740, 86574831, 173149662
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Hankel transform is A178115.

Crossrefs

Formula

a(n) = Sum_{k=0..n} C(floor(n/2),floor(k/2))*((1+(-1)^(n-k))/2)*C(k+1,floor((k+1)/2)). [The formula seems to generate A026392, not these terms. - R. J. Mathar, Feb 10 2015]
Conjecture: a(2*n) = A005773(n+1), a(2*n+1) = 2*a(2*n). - Jason Yuen, Feb 09 2025

A178114 Expansion of (sqrt(1-2x+7x^2-6x^3+5x^4)-(1-x+x^2))/(2x^2(1-x+x^2)).

Original entry on oeis.org

1, 1, -1, -3, 0, 8, 6, -21, -37, 45, 175, -22, -703, -533, 2370, 4321, -5930, -23560, 3534, 104035, 81083, -376267, -705158, 993738, 4047745, -604007, -18622243, -14895477, 69622834, 133284470, -188549209, -784970693, 110402283
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Hankel transform is A178115.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1-2x+7x^2-6x^3+5x^4]-(1-x+x^2))/(2x^2 (1-x+x^2)),{x,0,40}],x] (* Harvey P. Dale, Dec 01 2013 *)

Formula

D-finite with recurrence: +(n+2)*a(n) +2*(-n-1)*a(n-1) +(7*n-4)*a(n-2) +2*(-3*n+4)*a(n-3) +5*(n-2)*a(n-4)=0. - R. J. Mathar, Feb 10 2015
Showing 1-2 of 2 results.