cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178120 Coefficient array of orthogonal polynomials P(n,x)=(x-2n)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x-2.

Original entry on oeis.org

1, -2, 1, 7, -6, 1, -36, 40, -12, 1, 253, -326, 131, -20, 1, -2278, 3233, -1552, 324, -30, 1, 25059, -38140, 20678, -5260, 675, -42, 1, -325768, 523456, -310560, 90754, -14380, 1252, -56, 1, 4886521, -8205244, 5223602, -1694244, 312059, -33866, 2135, -72, 1
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Inverse is A178121. First column is A112293 signed.

Examples

			Triangle begins
1,
-2, 1,
7, -6, 1,
-36, 40, -12, 1,
253, -326, 131, -20, 1,
-2278, 3233, -1552, 324, -30, 1,
25059, -38140, 20678, -5260, 675, -42, 1,
-325768, 523456, -310560, 90754, -14380, 1252, -56, 1,
4886521, -8205244, 5223602, -1694244, 312059, -33866, 2135, -72, 1
Production matrix of inverse is
2, 1,
1, 4, 1,
0, 3, 6, 1,
0, 0, 5, 8, 1,
0, 0, 0, 7, 10, 1,
0, 0, 0, 0, 9, 12, 1,
0, 0, 0, 0, 0, 11, 14, 1,
0, 0, 0, 0, 0, 0, 13, 16, 1,
0, 0, 0, 0, 0, 0, 0, 15, 18, 1
		

Programs

  • Maple
    A178120 := proc(n,k)
        if n = k then
            1;
        elif n = 1 and k = 0 then
            -2 ;
        elif k < 0 or k > n then
            0 ;
        else
            -2*n*procname(n-1,k)+procname(n-1,k-1)-(2*n-3)*procname(n-2,k) ;
        end if;
    end proc: # R. J. Mathar, Dec 03 2014
  • Mathematica
    P[0, _] = 1;
    P[1, x_] := x - 2;
    P[n_, x_] := P[n, x] = (x-2n) P[n-1, x] - (2n-3) P[n-2, x];
    T[n_] := Module[{x}, CoefficientList[P[n, x], x]];
    Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Aug 06 2023 *)