A178120 Coefficient array of orthogonal polynomials P(n,x)=(x-2n)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x-2.
1, -2, 1, 7, -6, 1, -36, 40, -12, 1, 253, -326, 131, -20, 1, -2278, 3233, -1552, 324, -30, 1, 25059, -38140, 20678, -5260, 675, -42, 1, -325768, 523456, -310560, 90754, -14380, 1252, -56, 1, 4886521, -8205244, 5223602, -1694244, 312059, -33866, 2135, -72, 1
Offset: 0
Examples
Triangle begins 1, -2, 1, 7, -6, 1, -36, 40, -12, 1, 253, -326, 131, -20, 1, -2278, 3233, -1552, 324, -30, 1, 25059, -38140, 20678, -5260, 675, -42, 1, -325768, 523456, -310560, 90754, -14380, 1252, -56, 1, 4886521, -8205244, 5223602, -1694244, 312059, -33866, 2135, -72, 1 Production matrix of inverse is 2, 1, 1, 4, 1, 0, 3, 6, 1, 0, 0, 5, 8, 1, 0, 0, 0, 7, 10, 1, 0, 0, 0, 0, 9, 12, 1, 0, 0, 0, 0, 0, 11, 14, 1, 0, 0, 0, 0, 0, 0, 13, 16, 1, 0, 0, 0, 0, 0, 0, 0, 15, 18, 1
Programs
-
Maple
A178120 := proc(n,k) if n = k then 1; elif n = 1 and k = 0 then -2 ; elif k < 0 or k > n then 0 ; else -2*n*procname(n-1,k)+procname(n-1,k-1)-(2*n-3)*procname(n-2,k) ; end if; end proc: # R. J. Mathar, Dec 03 2014
-
Mathematica
P[0, _] = 1; P[1, x_] := x - 2; P[n_, x_] := P[n, x] = (x-2n) P[n-1, x] - (2n-3) P[n-2, x]; T[n_] := Module[{x}, CoefficientList[P[n, x], x]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Aug 06 2023 *)
Comments