A178128 Lesser of twin primes if it is a Ramanujan prime.
11, 17, 29, 41, 59, 71, 101, 107, 149, 179, 227, 239, 269, 281, 311, 347, 419, 431, 461, 569, 599, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1427, 1451, 1481, 1487, 1607, 1667, 1721, 1787, 1871, 1877, 1997
Offset: 1
Keywords
Examples
a(1) = 11 because 11 and 13 are the 1st twin primes the lesser of which is a Ramanujan prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009, 2010.
- J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
Crossrefs
Programs
-
Mathematica
nn = 200; R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s + 1]] = k], {k, Prime[3 nn]}]; A104272 = R + 1; A001359 = Select[Prime[Range[2 nn]], PrimeQ[# + 2]&]; Intersection[A001359, A104272] (* Jean-François Alcover, Nov 07 2018, using T. D. Noe's code for A104262 *)
-
Perl
use ntheory ":all"; my @t = grep { is_prime($+2) } @{ramanujan_primes(10000)}; say "@t"; # _Dana Jacobsen, Sep 06 2015
Comments