A178153 Difference between the numbers of quadratic residues (mod p) less than p/2 and greater than p/2, where p=prime(n).
1, 0, 1, 3, 0, 0, 3, 3, 0, 3, 0, 0, 3, 5, 0, 9, 0, 3, 7, 0, 5, 9, 0, 0, 0, 5, 9, 0, 0, 5, 15, 0, 9, 0, 7, 0, 3, 11, 0, 15, 0, 13, 0, 0, 9, 9, 7, 15, 0, 0, 15, 0, 21, 0, 13, 0, 11, 0, 0, 9, 0, 9, 19, 0, 0, 9, 0, 15, 0, 0, 19, 9, 0, 9, 17, 0, 0, 0, 0, 27, 0, 21, 0, 15, 15, 0, 0, 0, 7, 21, 25, 7, 27, 9, 21, 0
Offset: 2
Examples
The quadratic residues of 19, the 8th prime, are 1, 4, 5, 6, 7, 9, 11, 16, 17. Hence a(8)=6-3=3.
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, NY, 1966, p. 346.
- H. Davenport, Multiplicative Number Theory, Graduate Texts in Math. 74, 2nd ed., Springer, 1980, p. 51.
Links
- R. J. Mathar, Table of n, a(n) for n = 2..2066
- MathOverflow, Most squares in the first half-interval
Programs
-
Maple
A178153 := proc(n) local r,a,p; p := ithprime(n) ; a := 0 ; for r from 1 to p/2 do if numtheory[legendre](r,p) =1 then a := a+1 ; end if; end do: for r from ceil(p/2) to p-1 do if numtheory[legendre](r,p) =1 then a := a-1 ; end if; end do: a; end proc: # R. J. Mathar, Feb 10 2017
-
Mathematica
Table[p=Prime[n]; Length[Select[Range[(p-1)/2], JacobiSymbol[ #,p]==1&]] - Length[Select[Range[(p+1)/2,p-1], JacobiSymbol[ #,p]==1&]], {n,2,100}] Table[p = Prime[n]; Sum[ JacobiSymbol[a, p], {a, 1, (p-1)/2}], {n, 2, 100}] (* Jonathan Sondow, Oct 30 2011 *)
Formula
a(n) = Sum_{j=1..(p-1)/2} (j|p), where p = prime(n) and (j|p) = +-1 is the Legendre symbol. - Jonathan Sondow, Oct 30 2011
Comments