cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178176 a(n) is the number of central quotients of simple compact Lie groups of dimension n.

Original entry on oeis.org

0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Andrew Rupinski, Dec 18 2010

Keywords

Examples

			a(3) = 2 since the 3-dimensional SU(2) has two central quotients: SU(2) and SU(2)/2 = SO(3).
a(28) = 3 and not 4 since, because of triality for Spin(8), the semi-spin group HSpin(8) is isomorphic to SO(8). Thus, the only groups are Spin(8), SO(8), PSO(8). See the nLab link.
The unusually large value a(78) = 6 is due to Spin(13), SO(13), Sp(6), PSp(6), E_6, E_6/Z3 all of dimension 78.
		

Programs

  • R
    Number.Divisors=function(n){
      out=c()
      for(j in 1:n){if(n%%j==0){out=c(out,j)}}
      return(length(out))
    }
    a178176=function(n){
      kSU=sqrt(n+1)
      kSO=(sqrt(8*n+1)+1)/2
      kSp=(sqrt(8*n+1)-1)/4
      a=0
      if(n %in% c(14,52,248)){a=a+1} # G2, F4, E8 with center Z1
      if(n %in% c(78,133)){a=a+2} # E7 with center Z2, E6 with center Z3
      if(kSp%%1==0 & kSp>=2){a=a+2} # Sp(k), PSp(k)
      if(kSU%%1==0 & kSU>=2){a=a+Number.Divisors(kSU)} # SU(n)/Zd
      if(kSO%%1==0 & kSO>=7 & kSO!=8){
        if(kSO%%2!=0){a=a+2} # Spin(k), SO(k)
        if(kSO%%2==0 & kSO%%4!=0){a=a+3} # Spin(k), SO(k), PSO(k)
        if(kSO%%4==0){a=a+4} # Spin(k), SO(k), HSpin(k), PSO(k)
      }
      if(n==28){a=3} # Because of Triality: Spin(8), HSpin(8)=SO(8), PSO(8)
      return(a)
    } # Andrea Aveni, Mar 23 2025

Extensions

a(28) corrected by Andrea Aveni, Mar 23 2025