cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A320333 a(n) is the number of pairings of the first 2*k positive integers into k pairs (xi, yi) such that the k numbers (xi + yi) mod k are all different where k = 2*n + 1.

Original entry on oeis.org

1, 9, 145, 4641, 231417, 16770369, 1671395713
Offset: 0

Views

Author

Altug Alkan, Oct 11 2018

Keywords

Comments

It can be seen as interesting that a(t) = A178185(t+1) for 0 <= t <= 3.

Examples

			a(1) = 9 because {(1,4), (2,5), (3,6)}, {(1,5), (2,6), (3,4)}, {(1,6), (2,4), (3,5)}, {(1,3), (2,6), (4,5)}, {(1,5), (2,3), (4,6)}, {(1,6), (2,3), (4,5)}, {(1,3), (2,4), (5,6)}, {(1,2), (3,5), (4,6)}, {(1,2), (3,4), (5,6)} are corresponding sets.
		

Crossrefs

A371441 a(n) = a(n-1)*3^n + 1 where a(0)=1.

Original entry on oeis.org

1, 4, 37, 1000, 81001, 19683244, 14349084877, 31381448626000, 205893684435186001, 4052605390737766057684, 239302295717674347940182517, 42391683779498857714559512339000, 22528678819460652442683221796950499001, 35917990801478965784376042224979510418771324
Offset: 0

Views

Author

Alexandre Herrera, Mar 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^(k*(2*n + 1 - k)/2), {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 10 2024 *)
    Block[{n = 0}, NestList[#*3^++n + 1 &, 1, 15]] (* Paolo Xausa, Apr 19 2024 *)
  • Python
    l = [1]
    for i in range(1,14):
        l.append(l[-1]*pow(3,i) + 1)
    print(l)

Formula

a(n) = Sum_{k=0..n} 3^(k*(2*n + 1 - k)/2). - Vaclav Kotesovec, Apr 10 2024
Showing 1-2 of 2 results.