cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178193 Smith numbers of order 4.

Original entry on oeis.org

3777, 7773, 17418, 30777, 53921, 66111, 97731, 111916, 119217, 122519, 128131, 133195, 135488, 138878, 145229, 178814, 180174, 198581, 257376, 269636, 281179, 296396, 317686, 358256, 362996, 366514, 394114, 435777, 457377, 469552, 475856, 502960, 513833
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Comments

Composite numbers n not in A176670 such that the sum of the 4th power of the digits of n equals the sum of the 4th power of the digits of the prime factors of n (with multiplicity). A176670 lists composite numbers having the same digits as their prime factors (with multiplicity), excluding zero digits.

Examples

			3777 = 3*1259 is composite; sum of 4th power of the digits is 3^4 + 7^4 + 7^4 + 7^4 = 7284. Sum of 4th power of the digits of the prime factors 3, 1259 is 3^4 + 1^4 + 2^4 + 5^4 + 9^4 = 7284. The sums are equal, so 3777 is in the sequence.
17418 = 2*3*2903 is composite; sum of 4th power of the digits is 1^4 + 7^4 + 4^4 + 1^4 + 8^4 = 6755. Sum of 4th power of the digits of the prime factors 2, 3, 2903 is 2^4 + 3^4 + 2^4 + 9^4 + 0^4 + 3^4 = 6755. The sums are equal, so 17418 is in the sequence.
269636 = 2*2*67409 is composite; sum of 4th power of the digits is 2^4 + 6^4 + 9^4 + 6^4 + 3^4 + 6^4 = 10546. Sum of 4th power of the digits of the prime factors 2, 2, 67409 (with multiplicity) is 2^4 + 2^4 + 6^4 + 7^4 + 4^4 + 0^4 + 9^4 = 10546. The sums are equal, so 269636 is in the sequence.
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178203, A178204.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; id != fid && Plus @@ (id^4) == Plus @@ (fid^4)]; k = 1; lst = {}; While[k < 10^6, If[f Q@ k, AppendTo[lst, k]; Print@ k]; k++]; lst