cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A174460 Smith numbers of order 2.

Original entry on oeis.org

56, 58, 810, 822, 1075, 1519, 1752, 2145, 2227, 2260, 2483, 2618, 2620, 3078, 3576, 3653, 3962, 4336, 4823, 4974, 5216, 5242, 5386, 5636, 5719, 5762, 5935, 5998, 6220, 6424, 6622, 6845, 7015, 7251, 7339, 7705, 7756, 8460, 9254, 9303, 9355, 10481, 10626, 10659
Offset: 1

Views

Author

Paul Weisenhorn, Dec 20 2010

Keywords

Comments

Composite numbers a(n) such that the sum of digits^2 equals the sum of digits^2 of its prime factors without the numbers of A176670 that have the same digits as its prime factors (without the zero digit).
It seems as though as the order n approaches infinity, the sequence of n-order Smith numbers approaches A176670. Is there a value of n where the only n-order Smith numbers are members of A176670? - Ely Golden, Dec 07 2016

Examples

			a(2) = 58 = 2*29 is a Smith number of order 2 because 5^2 + 8^2 = 2^2 + 2^2 + 9^2 = 89.
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A178213, A178193, A178203, A178204.

Programs

  • Maple
    for s from 2 to 10000 do g:=nops(ifactors(s)[2]): qsp:=0: for u from 1 to g do z:=ifactors(s)[2,u][1]: h:=0: while (z>0) do z:=iquo(z,10,'r'): h:=h+r^2: end do: h:=h*ifactors(s)[2,u][2]: qsp:=qsp+h: end do: z:=s: qs:=0: while (z>0) do z:=iquo(z,10,'r'): qs:=qs+r^2: end do: if (qsp=qs) then print(s): end if: end do:
  • Mathematica
    With[{k = 2},Select[Range[12000], Function[n, And[Total@ Map[#^k &, IntegerDigits@ n] == Total@ Map[#^k &, Flatten@ IntegerDigits[#]], Not[Sort@ DeleteCases[#, 0] &@ IntegerDigits@ n == Sort@ DeleteCases[#, 0] &@ #]] &@ Flatten@ Map[IntegerDigits@ ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)

A178184 Sum 2^((k^2+3k)/2) from k=1 to n.

Original entry on oeis.org

4, 36, 548, 16932, 1065508, 135283236, 34495021604, 17626681066020, 18032025190548004, 36911520172609651236, 151152638972001256489508, 1238091191924352276155613732, 20283647694843594776223406899748
Offset: 1

Views

Author

Artur Jasinski, May 21 2010

Keywords

Comments

Series of the kind m^((k^2+3k)/2) from k=1 to n was studied by Bernoulli and Euler.

Crossrefs

Programs

  • Mathematica
    aa = {}; m = 2; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, sum], {n, 1, 20}]; aa (*Artur Jasinski*)
    Accumulate[Table[2^((k^2+3k)/2),{k,20}]] (* Harvey P. Dale, Aug 17 2021 *)

A178213 Smith numbers of order 3.

Original entry on oeis.org

6606, 8540, 13086, 16866, 21080, 26637, 27468, 33387, 34790, 35364, 35377, 40908, 44652, 48154, 48860, 52798, 54814, 55055, 57726, 57894, 66438, 67297, 67356, 67594, 69549, 72465, 72598, 73026, 74371, 74785, 77485, 78745, 81546, 83175, 85927, 90174, 91208
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Comments

Composite numbers n not in A176670 such that the sum of the cubes of the digits of n equals the sum of the cubes of the digits of the prime factors of n (with multiplicity). A176670 lists composite numbers having the same digits as their prime factors (with multiplicity), excluding zero digits.

Examples

			6606 = 2*3*3*367 is composite; sum of cubes of the digits is 6^3+6^3+0^3+6^3 = 648. Sum of cubes of the digits of the prime factors 2, 3, 3, 367 (with multiplicity) is 2^3+3^3+3^3+3^3+6^3+7^3 = 648. The sums are equal, so 6606 is in the sequence.
21080 = 2*2*2*5*17*31 is composite; sum of cubes of the digits is 2^3+1^3+0^3+8^3+0^3 = 521. Sum of cubes of the digits of the prime factors 2, 2, 2, 5, 17, 31 (with multiplicity) is 2^3+2^3+2^3+5^3+1^3+7^3+3^3+1^3 = 521. The sums are equal, so 21080 is in the sequence.
		

Crossrefs

Cf. A006753 (Smith numbers), A174460, A176670, A178193, A178203, A178204.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; !PrimeQ@ n && id != fid && Plus @@ (id^3) == Plus @@ (fid^3)]; k = 2; lst = {}; While[k < 22002, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++]; lst
    With[{k = 3}, Select[Range[10^5], Function[n, And[Total@ Map[#^k &, IntegerDigits@ n] == Total@ Map[#^k &, Flatten@ IntegerDigits[#]], Not[Sort@ DeleteCases[#, 0] &@ IntegerDigits@ n == Sort@ DeleteCases[#, 0] &@#]] &@ Flatten@ Map[IntegerDigits@ ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)

A178203 Smith numbers of order 5; composite numbers n such that sum of digits^5 equal sum of digits^5 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).

Original entry on oeis.org

414966, 443166, 454266, 1274664, 1371372, 1701856, 1713732, 1734616, 1771248, 1858436, 1858616, 2075664, 2624976, 3606691, 3771031, 3771301, 4266914, 4414866, 4461786, 4605146, 4670576, 4710739, 5209663, 5281767, 5434572, 5836565, 5861712, 5871968, 6046357
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Examples

			a(10) = 1858436 = 2*2*29*37*433;
1^5 + 3^5 + 4^5 + 5^5 + 6^5 + 2*8^5 = 3*2^5 + 3*3^5 + 4^5 + 7^5 + 9^5 = 77705.
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178193, A178204.

Extensions

a(21) corrected by Donovan Johnson, Jan 02 2013

A178204 Smith numbers of order 6; composite numbers n such that sum of digits^6 equal sum of digits^6 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).

Original entry on oeis.org

40844882, 113986781, 130852098, 141176320, 168137185, 170774472, 178180163, 181681157, 181693781, 183161897, 187117638, 215149451, 261666000, 284804842, 294557945, 307711074, 335524949, 337194240, 344552927, 347391040, 355318188, 358831104, 368657536
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Examples

			a(4) = 141176320 = 2^9*5*55147;
3*1^6+2^6+3^6+4^6+6^6+7^6 = 1^6+9*2^6+4^6+3*5^6+7^6 = 169197
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178193, A178203.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; id != fid && Plus @@ (id^6) == Plus @@ (fid^6)]; k = 2; lst = {}; While[k < 50000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

Example corrected by Donovan Johnson, Jan 02 2013

A178185 Numerator of Sum_{k=1..n} 1/2^((k^2 + 3*k)/2).

Original entry on oeis.org

1, 9, 145, 4641, 297025, 38019201, 9732915457, 4983252713985, 5102850779120641, 10450638395639072769, 42805814868537642061825, 350665235403060363770470401, 5745299216843741000015387049985
Offset: 1

Views

Author

Artur Jasinski, May 21 2010

Keywords

Comments

Series of the kind m^((k^2 + 3*k)/2) from k=1 to n were studied by Bernoulli and Euler.

Crossrefs

Cf. A036442 (denominators).

Programs

  • Mathematica
    aa = {}; m = 1/2; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, Numerator[sum]], {n, 1, 20}]; aa
    Numerator[Table[Sum[1/2^((k^2 + 3*k)/2), {k, 1, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Apr 10 2024 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (1/2)^((k^2+3*k)/2))); \\ Michel Marcus, Sep 09 2013

Formula

a(n) = 2^(n+1)*a(n-1) + 1, a(1) = 1. - Alexandre Herrera, Mar 23 2024
a(n) ~ c * A036442(n+1) = c * 2^(n*(n+3)/2), where c = 2^(1/8) * EllipticTheta[2, 0, 1/Sqrt[2]] - 3 [in Mathematica] = 2^(1/8) * JacobiTheta2(0, 1/sqrt(2)) - 3 [in Maple] = 0.2832651213103077325876855404508588684521230759134794956... - Vaclav Kotesovec, Apr 10 2024

A178186 Sum 3^((k^2+3k)/2) from k=1 to n.

Original entry on oeis.org

9, 252, 19935, 4802904, 3491587305, 7629089072292, 50039174188071999, 984820941357799304880, 58150721823981417489695049, 10301109611599361435391036962892, 5474411390529830981438591324606714655
Offset: 1

Views

Author

Artur Jasinski, May 21 2010

Keywords

Comments

Series of the kind m^((k^2+3k)/2) from k=1 to n was studied by Bernoulli and Euler.

Crossrefs

Programs

  • Mathematica
    aa = {}; m = 3; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, sum], {n, 1, 20}]; aa (*Artur Jasinski*)
    Table[Sum[3^((k^2+3k)/2),{k,n}],{n,20}] (* Harvey P. Dale, Jul 10 2020 *)
    Accumulate[Table[3^((k^2+3k)/2),{k,15}]] (* Harvey P. Dale, Mar 25 2023 *)
  • PARI
    a(n) = sum(k=1, n, 3^((k^2+3*k)/2)); \\ Michel Marcus, Sep 09 2013

A178187 Numerators of sum (1/3)^((k^2+3k)/2) from k=1 to n.

Original entry on oeis.org

1, 28, 2269, 551368, 401947273, 879058686052, 5767504039187173, 113521782003321126160, 6703347705514109178621841, 1187477935988707898665323267628, 631074461779774914374598062671491949
Offset: 1

Views

Author

Artur Jasinski, May 21 2010

Keywords

Comments

Series of the kind m^((k^2+3k)/2) from k=1 to n was studied by Bernoulli and Euler.

Crossrefs

Cf. A217628 (denominators).

Programs

  • Mathematica
    aa = {}; m = 1/3; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, Numerator[sum]], {n, 1, 20}]; aa (*Artur Jasinski*)
    Accumulate[Table[(1/3)^((k^2+3k)/2),{k,20}]]//Numerator (* Harvey P. Dale, May 29 2020 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (1/3)^((k^2+3*k)/2))); \\ Michel Marcus, Sep 09 2013

A178188 a(n) = Sum_{k=1..n} 5^((k^2+3k)/2).

Original entry on oeis.org

25, 3150, 1956275, 6105471900, 95373537112525, 7450675970460940650, 2910390496349340822268775, 5684344796471297836309816409400, 55511156915602623492479419714357425025
Offset: 1

Views

Author

Artur Jasinski, May 21 2010

Keywords

Comments

Series of the kind m^((k^2+3k)/2) from k=1 to n was studied by Bernoulli and Euler.

Crossrefs

Programs

  • Mathematica
    aa = {}; m = 5; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, sum], {n, 1, 20}]; aa (*Artur Jasinski*)
    Table[Sum[5^((k^2+3k)/2),{k,n}],{n,10}] (* Harvey P. Dale, Jan 17 2015 *)
  • PARI
    a(n) = sum(k=1, n, 5^((k^2+3*k)/2)); \\ Michel Marcus, Sep 09 2013

A178189 Numerators of sum (1/5)^((k^2+3k)/2) from k=1 to n.

Original entry on oeis.org

1, 126, 78751, 246096876, 3845263687501, 300411225586015626, 117348134994537353906251, 229195576161205769348146484376, 2238238048449275091290493011484375001
Offset: 1

Views

Author

Artur Jasinski, May 21 2010

Keywords

Comments

Series of the kind m^((k^2+3k)/2) from k=1 to n was studied by Bernoulli and Euler.

Crossrefs

Programs

  • Mathematica
    aa = {}; m = 1/5; sum = 0; Do[sum = sum + m^((n + 3) n/2); AppendTo[aa, Numerator[sum]], {n, 1, 20}]; aa (*Artur Jasinski*)
  • PARI
    a(n) = numerator(sum(k=1, n, (1/5)^((k^2+3*k)/2))); \\ Michel Marcus, Sep 09 2013
Showing 1-10 of 13 results. Next