cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178193 Smith numbers of order 4.

Original entry on oeis.org

3777, 7773, 17418, 30777, 53921, 66111, 97731, 111916, 119217, 122519, 128131, 133195, 135488, 138878, 145229, 178814, 180174, 198581, 257376, 269636, 281179, 296396, 317686, 358256, 362996, 366514, 394114, 435777, 457377, 469552, 475856, 502960, 513833
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Comments

Composite numbers n not in A176670 such that the sum of the 4th power of the digits of n equals the sum of the 4th power of the digits of the prime factors of n (with multiplicity). A176670 lists composite numbers having the same digits as their prime factors (with multiplicity), excluding zero digits.

Examples

			3777 = 3*1259 is composite; sum of 4th power of the digits is 3^4 + 7^4 + 7^4 + 7^4 = 7284. Sum of 4th power of the digits of the prime factors 3, 1259 is 3^4 + 1^4 + 2^4 + 5^4 + 9^4 = 7284. The sums are equal, so 3777 is in the sequence.
17418 = 2*3*2903 is composite; sum of 4th power of the digits is 1^4 + 7^4 + 4^4 + 1^4 + 8^4 = 6755. Sum of 4th power of the digits of the prime factors 2, 3, 2903 is 2^4 + 3^4 + 2^4 + 9^4 + 0^4 + 3^4 = 6755. The sums are equal, so 17418 is in the sequence.
269636 = 2*2*67409 is composite; sum of 4th power of the digits is 2^4 + 6^4 + 9^4 + 6^4 + 3^4 + 6^4 = 10546. Sum of 4th power of the digits of the prime factors 2, 2, 67409 (with multiplicity) is 2^4 + 2^4 + 6^4 + 7^4 + 4^4 + 0^4 + 9^4 = 10546. The sums are equal, so 269636 is in the sequence.
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178203, A178204.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; id != fid && Plus @@ (id^4) == Plus @@ (fid^4)]; k = 1; lst = {}; While[k < 10^6, If[f Q@ k, AppendTo[lst, k]; Print@ k]; k++]; lst

A174460 Smith numbers of order 2.

Original entry on oeis.org

56, 58, 810, 822, 1075, 1519, 1752, 2145, 2227, 2260, 2483, 2618, 2620, 3078, 3576, 3653, 3962, 4336, 4823, 4974, 5216, 5242, 5386, 5636, 5719, 5762, 5935, 5998, 6220, 6424, 6622, 6845, 7015, 7251, 7339, 7705, 7756, 8460, 9254, 9303, 9355, 10481, 10626, 10659
Offset: 1

Views

Author

Paul Weisenhorn, Dec 20 2010

Keywords

Comments

Composite numbers a(n) such that the sum of digits^2 equals the sum of digits^2 of its prime factors without the numbers of A176670 that have the same digits as its prime factors (without the zero digit).
It seems as though as the order n approaches infinity, the sequence of n-order Smith numbers approaches A176670. Is there a value of n where the only n-order Smith numbers are members of A176670? - Ely Golden, Dec 07 2016

Examples

			a(2) = 58 = 2*29 is a Smith number of order 2 because 5^2 + 8^2 = 2^2 + 2^2 + 9^2 = 89.
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A178213, A178193, A178203, A178204.

Programs

  • Maple
    for s from 2 to 10000 do g:=nops(ifactors(s)[2]): qsp:=0: for u from 1 to g do z:=ifactors(s)[2,u][1]: h:=0: while (z>0) do z:=iquo(z,10,'r'): h:=h+r^2: end do: h:=h*ifactors(s)[2,u][2]: qsp:=qsp+h: end do: z:=s: qs:=0: while (z>0) do z:=iquo(z,10,'r'): qs:=qs+r^2: end do: if (qsp=qs) then print(s): end if: end do:
  • Mathematica
    With[{k = 2},Select[Range[12000], Function[n, And[Total@ Map[#^k &, IntegerDigits@ n] == Total@ Map[#^k &, Flatten@ IntegerDigits[#]], Not[Sort@ DeleteCases[#, 0] &@ IntegerDigits@ n == Sort@ DeleteCases[#, 0] &@ #]] &@ Flatten@ Map[IntegerDigits@ ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)

A178213 Smith numbers of order 3.

Original entry on oeis.org

6606, 8540, 13086, 16866, 21080, 26637, 27468, 33387, 34790, 35364, 35377, 40908, 44652, 48154, 48860, 52798, 54814, 55055, 57726, 57894, 66438, 67297, 67356, 67594, 69549, 72465, 72598, 73026, 74371, 74785, 77485, 78745, 81546, 83175, 85927, 90174, 91208
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Comments

Composite numbers n not in A176670 such that the sum of the cubes of the digits of n equals the sum of the cubes of the digits of the prime factors of n (with multiplicity). A176670 lists composite numbers having the same digits as their prime factors (with multiplicity), excluding zero digits.

Examples

			6606 = 2*3*3*367 is composite; sum of cubes of the digits is 6^3+6^3+0^3+6^3 = 648. Sum of cubes of the digits of the prime factors 2, 3, 3, 367 (with multiplicity) is 2^3+3^3+3^3+3^3+6^3+7^3 = 648. The sums are equal, so 6606 is in the sequence.
21080 = 2*2*2*5*17*31 is composite; sum of cubes of the digits is 2^3+1^3+0^3+8^3+0^3 = 521. Sum of cubes of the digits of the prime factors 2, 2, 2, 5, 17, 31 (with multiplicity) is 2^3+2^3+2^3+5^3+1^3+7^3+3^3+1^3 = 521. The sums are equal, so 21080 is in the sequence.
		

Crossrefs

Cf. A006753 (Smith numbers), A174460, A176670, A178193, A178203, A178204.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; !PrimeQ@ n && id != fid && Plus @@ (id^3) == Plus @@ (fid^3)]; k = 2; lst = {}; While[k < 22002, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++]; lst
    With[{k = 3}, Select[Range[10^5], Function[n, And[Total@ Map[#^k &, IntegerDigits@ n] == Total@ Map[#^k &, Flatten@ IntegerDigits[#]], Not[Sort@ DeleteCases[#, 0] &@ IntegerDigits@ n == Sort@ DeleteCases[#, 0] &@#]] &@ Flatten@ Map[IntegerDigits@ ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)

A178204 Smith numbers of order 6; composite numbers n such that sum of digits^6 equal sum of digits^6 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).

Original entry on oeis.org

40844882, 113986781, 130852098, 141176320, 168137185, 170774472, 178180163, 181681157, 181693781, 183161897, 187117638, 215149451, 261666000, 284804842, 294557945, 307711074, 335524949, 337194240, 344552927, 347391040, 355318188, 358831104, 368657536
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Examples

			a(4) = 141176320 = 2^9*5*55147;
3*1^6+2^6+3^6+4^6+6^6+7^6 = 1^6+9*2^6+4^6+3*5^6+7^6 = 169197
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178193, A178203.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; id != fid && Plus @@ (id^6) == Plus @@ (fid^6)]; k = 2; lst = {}; While[k < 50000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

Example corrected by Donovan Johnson, Jan 02 2013
Showing 1-4 of 4 results.