A178203 Smith numbers of order 5; composite numbers n such that sum of digits^5 equal sum of digits^5 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).
414966, 443166, 454266, 1274664, 1371372, 1701856, 1713732, 1734616, 1771248, 1858436, 1858616, 2075664, 2624976, 3606691, 3771031, 3771301, 4266914, 4414866, 4461786, 4605146, 4670576, 4710739, 5209663, 5281767, 5434572, 5836565, 5861712, 5871968, 6046357
Offset: 1
Examples
a(10) = 1858436 = 2*2*29*37*433; 1^5 + 3^5 + 4^5 + 5^5 + 6^5 + 2*8^5 = 3*2^5 + 3*3^5 + 4^5 + 7^5 + 9^5 = 77705.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
- Patrick Costello, A new largest Smith number, Fibonacci Quarterly 40(4) (2002), 369-371.
- Underwood Dudley, Smith numbers, Mathematics Magazine 67(1) (1994), 62-65.
- S. S. Gupta, Smith Numbers, Mathematical Spectrum 37(1) (2004/5), 27-29.
- S. S. Gupta, Smith Numbers.
- Eric Weisstein's World of Mathematics, Smith number.
- Wikipedia, Smith number.
- A. Wilansky, Smith Numbers, Two-Year College Math. J. 13(1) (1982), p. 21.
- Amin Witno, Another simple construction of Smith numbers, Missouri J. Math. Sci. 22(2) (2010), 97-101.
- Amin Witno, Smith multiples of a class of primes with small digital sum, Thai Journal of Mathematics 14(2) (2016), 491-495.
Extensions
a(21) corrected by Donovan Johnson, Jan 02 2013