cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179649 Sum of the primes < n*10^7.

Original entry on oeis.org

3203324994356, 12272577818052, 26942805919966, 47088408550139, 72619548630277, 103468900363400, 139601928199359, 180946446237951, 227485624300931, 279209790387276, 336102842056834, 398010087395245
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2010

Keywords

Crossrefs

Cf. A178221.

Programs

  • Mathematica
    k = 1; p = 2; s = 0; lst = {}; While[k < 13, While[p < 10^7*k, s = s + p; p = NextPrime@p]; k++; AppendTo[lst, s]; Print[{k - 1, s}]]

A145065 a(n) = sum of primes <= n*10^9.

Original entry on oeis.org

24739512092254535, 95673602693282040, 211169315361937456, 370412807102643725, 572840944428163514, 818062002011808625, 1105720106635140803, 1435543734762318281, 1807310307011831228, 2220822432581729238, 2675837181777714162, 3172247016440147644
Offset: 1

Views

Author

Jacques Tramu, Feb 20 2009

Keywords

Examples

			a(1) = 2 + 3 + 5 + ... + 999999937 = 24739512092254535.
		

Crossrefs

Programs

  • Mathematica
    k = 1; p = 2; s = 0; lst = {}; While[k < 10, While[p < 10^9*k, s = s + p; p = NextPrime@p]; k++; AppendTo[lst, s]; Print[{k - 1, s}]] (* Robert G. Wilson v, Jul 23 2010 *)
  • PARI
    A145065(n)=my(s=0);forprime(p=2,n*1e9,s+=p);s

Formula

a(n) = A179660(10*n). - R. J. Mathar, Aug 05 2010

Extensions

Extended by Charles R Greathouse IV, Jul 24 2009
Edited by N. J. A. Sloane, Jul 27 2010

A179660 Sum of the primes < n*10^8.

Original entry on oeis.org

279209790387276, 1075207199997334, 2367646772295462, 4146437503168147, 6404774487532576, 9137303389808024, 12340337443955708, 16010026481858292, 20143329357815162, 24739512092254535, 29795030058292249
Offset: 1

Views

Author

Robert G. Wilson v, Jul 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    k = 1; p = 2; s = 0; lst = {}; While[k < 12, While[p < 10^8*k, s = s + p; p = NextPrime@p]; k++; AppendTo[lst, s]; Print[{k - 1, s}]]
Showing 1-3 of 3 results.